Measurement and Study of Lidar Ratio by Using a Raman Lidar in Central China
نویسندگان
چکیده
We comprehensively evaluated particle lidar ratios (i.e., particle extinction to backscatter ratio) at 532 nm over Wuhan in Central China by using a Raman lidar from July 2013 to May 2015. We utilized the Raman lidar data to obtain homogeneous aerosol lidar ratios near the surface through the Raman method during no-rain nights. The lidar ratios were approximately 57 ± 7 sr, 50 ± 5 sr, and 22 ± 4 sr under the three cases with obviously different pollution levels. The haze layer below 1.8 km has a large particle extinction coefficient (from 5.4e-4 m(-1) to 1.6e-4 m(-1)) and particle backscatter coefficient (between 1.1e-05 m(-1)sr(-1) and 1.7e-06 m(-1)sr(-1)) in the heavily polluted case. Furthermore, the particle lidar ratios varied according to season, especially between winter (57 ± 13 sr) and summer (33 ± 10 sr). The seasonal variation in lidar ratios at Wuhan suggests that the East Asian monsoon significantly affects the primary aerosol types and aerosol optical properties in this region. The relationships between particle lidar ratios and wind indicate that large lidar ratio values correspond well with weak winds and strong northerly winds, whereas significantly low lidar ratio values are associated with prevailing southwesterly and southerly wind.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملCombined Raman-elastic backscatter lidar method for the measurement of backscatter ratios.
A variation of the conventional combined Raman-elastic backscatter lidar method, the 1-2-3 lidar method, is described and analyzed. This method adds a second transmitter wavelength to the conventional combined Raman-elastic backscatter lidar. This transmitter wavelength is identical to that of the Raman receiver. One can generate the transmitted beam at this wavelength by Raman shifting the las...
متن کاملEvaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust
The Lidar/Radiometer Inversion Code (LIRIC) combines the multiwavelength lidar technique with sun/sky photometry and allows us to retrieve vertical profiles of particle optical and microphysical properties separately for finemode and coarse-mode particles. After a brief presentation of the theoretical background, we evaluate the potential of LIRIC to retrieve the optical and microphysical prope...
متن کاملObservations of Water Vapor Mixing Ratio Profile and Flux in the Tibetan Plateau Based on the Lidar Technique
As a part of the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III) in China, a Raman water vapor, cloud and aerosol lidar and a coherent wind lidar were operated in Naqu (31.48°N, 92.06°E) with a mean elevation of more than 4500 m above MSL in summer of 2014. During the field campaign, the water vapor mixing ratio profiles were obtained and validated by radiosonde observation...
متن کاملRaman lidar profiling of aerosols over the central U.S.; diurnal variability and comparisons with the GOCART model
We use profiles of aerosol extinction, water vapor mixing ratio, and relative humidity measured by the ARM SGP Raman lidar in northern Oklahoma to show how the vertical distributions of aerosol extinction and water vapor vary throughout the diurnal cycle. While significant (20-30%) variations in aerosol extinction occurred near the surface as well as aloft, smaller (~10%) variations were observ...
متن کامل